Isolator® Row O&M Manual
THE ISOLATOR® ROW

INTRODUCTION
An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) and Total Phosphorus (TP) removal with easy access for inspection and maintenance.

THE ISOLATOR ROW
The Isolator Row is a row of StormTech chambers, either SC-160, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC-310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The woven geotextile provides a media for stormwater filtration, a durable surface for maintenance, prevents scour of the underlying stone and remains intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.

The Isolator Row is typically designed to capture the “first flush” and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole provides access to the Isolator Row and typically includes a high flow weir. When flow rates or volumes exceed the Isolator Row weir capacity the water will flow over the weir and discharge through a manifold to the other chambers.

Another acceptable design uses one open grate inlet structure. Using a “high/low” design (low invert elevation on the Isolator Row and a higher invert elevation on the manifold) an open grate structure can provide the advantages of the Isolator Row by creating a differential between the Isolator Row and manifold thus allowing for settlement in the Isolator Row.

The Isolator Row may be part of a treatment train system. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.

Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.
The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45° are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.
ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1
Inspect Isolator Row for sediment.
A) Inspection ports (if present)
 i. Remove lid from floor box frame
 ii. Remove cap from inspection riser
 iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
 iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
B) All Isolator Rows
 i. Remove cover from manhole at upstream end of Isolator Row
 ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 2. Follow OSHA regulations for confined space entry if entering manhole
 iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2.
 If not, proceed to Step 3.

STEP 2
Clean out Isolator Row using the JetVac process.
A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
B) Apply multiple passes of JetVac until backflush water is clean
C) Vacuum manhole sump as required

STEP 3
Replace all caps, lids and covers, record observations and actions.

STEP 4
Inspect & clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG

<table>
<thead>
<tr>
<th>Date</th>
<th>Stadia Rod Readings</th>
<th>Sediment Depth (1)–(2)</th>
<th>Observations/Actions</th>
<th>Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15/11</td>
<td>6.3 ft</td>
<td>none</td>
<td>New installation, fixed point is CI frame at grade</td>
<td>DJM</td>
</tr>
<tr>
<td>9/24/11</td>
<td>6.2 ft</td>
<td>0.1 ft</td>
<td>Some grit fell</td>
<td>SM</td>
</tr>
<tr>
<td>6/20/13</td>
<td>6.8 ft</td>
<td>0.5 ft</td>
<td>Mucky feel, debris visible in manhole and in Isolator Row, maintenance due</td>
<td>NV</td>
</tr>
<tr>
<td>7/7/13</td>
<td>6.3 ft</td>
<td>0</td>
<td>System jetted and vacuumed</td>
<td>DJM</td>
</tr>
</tbody>
</table>